Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            The ability to apply data-driven design principles to customize new CI investment to best serve the intended community as well as provide fact-based justification for its need is critical given the important role it plays in research and economic development and its high cost. Here we describe a data driven approach to CI sys- tem design based on workload analyses obtained using the popular open-source CI management tool Open XDMoD, and how it was leveraged in a procurement to provide end-users with an additional 5.6 million CPU hours annually, with subsequent procurements following similar design goals. In addition to system design, we demonstrate Open XDMoD’s utility in providing fact-based justifi- cation for the CI procurement through usage metrics of existing CI resources.more » « lessFree, publicly-accessible full text available July 18, 2026
- 
            Free, publicly-accessible full text available April 1, 2026
- 
            Free, publicly-accessible full text available April 1, 2026
- 
            Engineering strain critically affects the properties of materials and has extensive applications in semiconductors and quantum systems. However, the deployment of strain-engineered nanocatalysts faces challenges, in particular in maintaining highly strained nanocrystals under reaction conditions. Here, we introduce a morphology-dependent effect that stabilizes surface strain even under harsh reaction conditions. Using four-dimensional scanning transmission electron microscopy (4D-STEM), we found that cube-shaped core-shell Au@Pd nanoparticles with sharp-edged morphologies sustain coherent heteroepitaxial interfaces with larger critical thicknesses than morphologies with rounded edges. This configuration inhibits dislocation nucleation due to reduced shear stress at corners, as indicated by molecular dynamics simulations. A Suzuki-type cross-coupling reaction shows that our approach achieves a fourfold increase in activity over conventional nanocatalysts, owing to the enhanced stability of surface strain. These findings contribute to advancing the development of advanced nanocatalysts and indicate broader applications for strain engineering in various fields.more » « less
- 
            ACCESS is a program established and funded by the National Sci- ence Foundation to help researchers and educators use the NSF na- tional advanced computing systems and services. Here we present an analysis of the usage of ACCESS allocated cyberinfrastructure over the first 16 months of the ACCESS program, September 2022 through December 2023. For historical context, we include analyses of ACCESS and XSEDE, its NSF funded predecessor, for the ten-year period from January 2014 through December 2023. The analyses in- clude batch compute resource usage, cloud resource usage, science gateways, allocations, and users.more » « less
- 
            Climate change increases fire-favorable weather in forests, but fire trends are also affected by multiple other controlling factors that are difficult to untangle. We use machine learning to systematically group forest ecoregions into 12 global forest pyromes, with each showing distinct sensitivities to climatic, human, and vegetation controls. This delineation revealed that rapidly increasing forest fire emissions in extratropical pyromes, linked to climate change, offset declining emissions in tropical pyromes during 2001 to 2023. Annual emissions tripled in one extratropical pyrome due to increases in fire-favorable weather, compounded by increased forest cover and productivity. This contributed to a 60% increase in forest fire carbon emissions from forest ecoregions globally. Our results highlight the increasing vulnerability of forests and their carbon stocks to fire disturbance under climate change.more » « less
- 
            Hybrid materials that combine organic polymers and biomacromolecules offer unique opportunities for precisely controlling 3D chemical environments. Although biological or organic templates have been separately used to control the growth of inorganic nanoclusters, hybrid structures represent a relatively unexplored approach to tailoring nanocluster properties. Here, we demonstrate that a molecularly defined lysozyme–polymer resin material acts as a structural scaffold for the synthesis of copper nanoclusters (CuNCs) with well controlled size distributions. The resulting CuNCs have significantly enhanced fluorescence compared with syntheses based on polymeric or biological templates alone. The synergistic approach described here is appealing for the synthesis of biocompatible fluorescent labels with improved photostability.more » « less
- 
            Abstract Peptide cyclization has dramatic effects on a variety of important properties, enhancing metabolic stability, limiting conformational flexibility, and altering cellular entry and intracellular localization. The hydrophilic, polyfunctional nature of peptides creates chemoselectivity challenges in macrocyclization, especially for natural sequences without biorthogonal handles. Herein, we describe a gaseous sulfonyl chloride derived reagent that achieves amine–amine, amine–phenol, and amine–aniline crosslinking through a minimalist linchpin strategy that affords macrocyclic urea or carbamate products. The cyclization reaction is metal‐mediated and involves a novel application of sulfine species that remains unexplored in aqueous or biological contexts. The aqueous method delivers unique cyclic or bicyclic topologies directly from a variety of natural bioactive peptides without the need for protecting‐group strategies.more » « less
- 
            ABSTRACT Freshwater ecosystems and their biota are under increasing pressure from anthropogenic stressors. In response to declining fish stocks, hatchery and stocking programmes are widely implemented as core components of restoration and management strategies, with positive outcomes for some wild populations. Despite this, stocking remains contentious due to potential genetic and ecological risks to wild populations. Monitoring and evaluation of stocking outcomes are critical to ensuring the long‐term sustainability of wild populations, but identification of stocked individuals post‐release remains a key challenge, particularly for mobile species. In this study, we combined otolith (natal origin and age) and genomic data to identify stocked individuals and evaluate the genetic implications of stocking for a culturally and socioeconomically important and mobile freshwater fish, golden perchMacquaria ambigua(family: Percichthyidae), across Australia's Murray–Darling Basin (MDB). We also generated a chromosome‐level genome assembly. Many close kin were detected across the MDB, increasing in prevalence over recent decades and mostly of hatchery origin. Rivers with many close kin were associated with low effective population sizes (Ne< 100). Genetic signatures of stocking varied according to local context, being most pronounced in but not restricted to rivers considered functionally isolated for management purposes. Where fish are stocked into rivers that are part of the connected metapopulation, there is scope to modify current stocking practices to avoid over‐representation of related stocked individuals. Increased focus on the genetic diversity of stocked fish is likely to promote the long‐term persistence of golden perch in the wild.more » « lessFree, publicly-accessible full text available April 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
